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E
arly scientists were drawn to the
study of insects in part because of
the marvelous notion that their
full behavioral repertoire was

orchestrated from within. This was stated
most succinctly perhaps by Spalding
(1873): “When, as by a miracle, the lovely
butterfly bursts from the chrysalis full-
winged and perfect, . . .it has, for the most
part, nothing to learn, because its little
life flows from its organization like mel-
ody from a music box” (1). Of course, in
time, environmental signals were discov-
ered that modify insect behavior, making
things more complex, and the dialectic
between inherited and acquired behav-
ioral traits arose. However, behavior is
the ultimate arbiter of evolutionary
change, so it has been a focus of orga-
nized biological studies for more than
a century. The “Holy Grail” of un-
derstanding exactly where and how be-
havior is controlled, however, remains
elusive. In PNAS, Chandrasekaran et al.
(2) present behavioral analysis using tools
from systems biology to reveal distinct
neurogenomic states of transcriptional
modules related to honey bee pheno-
types. The heart of this unique work is
that distinct bee behaviors across occu-
pations are subserved by distinct neuro-
genomic states in the brain. These
neurogenomic states that underlie dif-
ferent behaviors rely on transcriptional
modules, some shared and some differ-
ent. Because the connection distance be-
tween genes and behavior is large and
complex, it is a surprise to find this level
of predictability, especially because
the data are from bees in their natural
habitat.

Bee Behavior and the Genome
Tinbergen (3) famously identified key
experimental questions distinguishing
proximate (how) questions from ultimate
(why) questions, setting the stage for be-
havioral analysis that brought it into the
scientific fold. In this context, the honey
bee is one of the best-studied organisms
because of its intricate behavior and
natural sequence of phenotypes. Von
Frisch (4) identified the dance “language”
that bees use to communicate the spatial
location of food and other resources to
their hive mates that has served as the
basis of numerous analyses of the re-
markable properties of the dance. In-
deed, the common belief that bees and
other insects are automatons belies their
sophisticated behavioral repertoires. For

example, a bee goes through a regular
progression of occupations, beginning as
a worker, cleaning comb cells in the hive.
Her next step is as a nurse, to feed honey
to larvae and after that to feed nest
mates. Finally, at approximately 3 wk of
age, she begins foraging for pollen and
nectar outside the hive. These trans-
formations have been shown to corre-
spond to changes in gene expression in
a landmark study by Whitfield et al. (5),
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across occupations are
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who tracked gene expression as bees
transitioned from nurses to foragers. Us-
ing microarrays to measure expression
levels of ≈5,500 genes out of the ≈14,000
in the bee genome, they found that ≈2,000
had different levels of expression corre-
sponding to their job.
Thus, the genome is an important

source of information used to transition
from one phenotype to the next. How-
ever, rather than the genome being
a slavish “music box” playing its melody,
bees can respond to the population dy-
namics of the hive. For example, Huang
and Robinson (6) experimentally altered
the distribution of phenotypes in a hive
and could change the timing of the tran-
sitions among bee types. For example,
adding older foragers to the hive radically
slowed the transition of younger bees
from nurses to foragers. Conversely,
adding young bees to a hive accelerated
that transition of young bees to foragers.
Leoncini et al. (7) then showed that these
changes occur via receipt of a fatty acid,
ethyl oleate, produced by older foragers
and seeming to be transferred with nectar
gathered. How this chemical transforms
behavior or gene expression is not known,
but there are ≈10 known pheromones
that can alter behavior in a hive, and it is
known that the animals are responsive
to key features of the current status of
the hive.

Transcriptional Regulatory Network
Related to Bee Behavior
Now, in a conceptual advance, Chan-
drasekaran et al. (2) use a systems ap-

proach to generate a transcriptional
regulatory network (TRN) model to ask
whether mRNA expression level patterns
can predict behavioral states. Using sam-
ples from natural populations, they con-
struct the TRN from expression levels
measured under a variety of states, eval-
uate its performance in new test con-
ditions, and then compare the sub-
networks associated with the three chosen
behavioral states: aggression, maturation,
and foraging. Their approach is de-
ceptively simple. Using a set of six steps,
they develop a model that predicts gene
expression from transcription factor ex-
pression. The most surprising outcome
is how robustly the systems biology ap-
proach relates natural behaviors to tran-
scriptional regulation. One might have
imagined that the variance in natural be-
havior would overwhelm a highly struc-
tured systems approach. Because large-
scale validation of the model using genetic
interventions such as RNAi is not yet
possible, the authors use comparative bi-
oinformatics analyses to provide corre-
lated information useful for interpreting
their results. These analyses reveal that
some factors such as hormones may drive
global gene expression across the brain,
and the high-level hubs in the model may
provide useful entry points into un-
derstanding how regulation unfolds in
time. Further, the model reveals numer-
ous genes not previously known to regu-
late behavior.
Recently microarray analyses have be-

gun to uncover genomic relationships to
behavior in humans. Transcriptome anal-
yses of the human brain (8) have shown
the power of analyzing gene coexpression
relationships in microarray data, revealing
a genomic architecture previously un-
suspected. Moreover, transcriptome orga-
nization between normal and autistic
brains suggested differences in regional
patterns in key brain regions between
these two kinds of brains (9). These data
suggest that convergent abnormalities of
transcription and splicing may reflect
common dysfunction characteristic of
autistic brains.
The deeper question for the study by

Chandrasekaran et al. (2) is how these
distinct transcriptional states relate to the
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control and regulation of behavior. Do
they reflect behavioral choices made by
existing neural circuits? Are they antici-
pating behavioral change by integrating
environmental inputs and influencing
neural circuits? How do genes and circuits
collude to make the “music box” of
Spalding? This study does not provide
causal evidence but instead illuminates

candidate signaling pathways controlling
the interaction between genes and
behavior.
Soon we can anticipate that such

transcriptomic assessments of normal or
pathological brains as related to behav-
ior will be joined by analysis of message
regulation by small RNAs and epi-
genetics. These additional levels of con-

trol will add more complexity to our
understanding of how genes and the
brain regulate and are regulated by
behavior.
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